
� ��� � ��� � �	��
����
� ���
�
�� � �����
�
����
�
 � ��
��� ������� �����
��

H. Cancela � , F. Robledo "! � and G. Rubino #
ARMOR team, IRISA/INRIA Rennes

Campus de Beaulieu 35042, Rennes, France$
Facultad de Ingenierı́a, Universidad de la República

J. Herrera y Reissig 565, Montevideo, Uruguay
cancela@fing.edu.uy, frobledo@irisa.fr, rubino@irisa.fr

Abstract: We consider in this work a variant of the Steiner Problem in

Graphs (SPG) with the additional restriction that terminal nodes must have

degree 1.

We customize the Greedy Randomized Adaptive Search Procedure (GRASP)

metaheuristic, testing its performance on a large problem set obtained by

modifying 182 SPG instances from the SteinLib repository. The GRASP

obtained good results, with low average gaps with respect to known lower

bounds in most of the problem classes, and attaining the optimum in 44 cases

(24% of the problem set).

Keywords: metaheuristic, Steiner problem in graphs, GRASP.

Classification: E019000 Science and engineering for electronics

%'&)(*&,+-&/.10,&)2

[1] T.A. Feo and M.G.C Resende, “Greedy randomized adaptive search proce-
dures”, Journal of Global Optimization 6 (1995), pages 109-133.

[2] M. Jünger, A. Martin, G. Reinelt, and R. Weismantel, “Quadratic 0/1 optimiza-
tion and a decomposition approach for the placement of electronic circuits”,
Mathematical Programming 63 (1994), pages 257-279.

[3] T. Koch, A. Martin and S. Voß, “SteinLib: An Updated Library on Steiner Tree
Problems in Graphs”, Konrad-Zuse-Zentrum für Informationstechnik Berlin,
ZIB-Report 00-37 (2000), url: http://elib.zib.de/steinlib.

[4] S.L. Martins, M.G.C. Resende, C.C. Ribeiro, and P.M. Pardalos, “A parallel
GRASP for the Steiner tree problem in graphs using a hybrid local search strat-
egy”, Journal of Global Optimization 17 (2000), pages 267-283.

[5] M. Minoux, “Efficient greedy heuristics for Steiner tree problems using reopti-
mization and supermodularity”, INFOR 28 (1990), pages 221-233.

[6] H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner
problem in graphs”, Math. Jpn. 24 (1980), pages 537-577.

[7] E. Uchoa, M.P. de Aragão and C. Ribeiro, “Preprocessing Steiner problems
from VLSI layout”, Catholic University of Rio de Janeiro, Technical Report
MCC 32-99 (1999).

[8] J. Y. Yen, “Finding the K shortest loopless paths in a network”, Management
Science 17 (1971), pages 712-716.

[9] M. Zachariasen and A. Rohe, “Rectilinear group Steiner trees and applications
in VLSI design”, Institute for Discrete Mathematics, Technical Report 00906
(2000).

c
3�465�48795�:<;<;)=

1

1 Introduction

Given a graph ���������
	�� , where � is the set of nodes, 	 is the set of edges,

and given a distinguished subset of nodes called the terminal vertices, the Steiner

Problem in Graphs consists of finding a minimum cost subgraph such that all termi-

nal nodes are connected, eventually using non-terminal nodes (also called Steiner

nodes; we denote by �������� their set). The cost of the edges of the graph is

given by ������������� � ! � �"! which is the matrix which gives for any pair of sites of

� , the cost of a direct connection between them. When the direct connection is not

possible, we take �#���$�&% .

The Steiner Problem in Graphs and its variants is an useful model for a number

of circuit design and communication network design problems [2, 7, 9]. We study

here an important variant of the problem: suppose we have a fixed node ' (called the

root), and that we want to connect all nodes in to ' (eventually using some Steiner

nodes), in such a way that all nodes in have degree 1 in the optimal solution (i.e.,

terminal sites can not be used as intermediate nodes; this implies in particular that

connections between pairs of terminal sites are not allowed). We call this problem

the Rooted Steiner Problem in Graphs (RSPG); it belongs to the NP-Hard class,

as can be proved by reducing in polynomial time the Steiner Problem in Graphs

to it. In Section 2 we present a polynomial time heuristic based on the GRASP

methodology for approximately solving the RSPG. Section 3 reports computational

results, obtained on a set of 182 problem instances, and some conclusions.

2 GRASP customization for the RSPG

GRASP [1] is an iterative metaheuristic optimization procedure, in which each it-

eration consists of two phases: construction and local search [1, 4]. The construc-

tion phase builds a feasible solution, whose neighborhood is explored by the local

search phase. Figure 1 shows the outline of the GRASP method, adapted to solve

the RSPG; in this proposal we employ as building blocks a path-based construction

phase and a minimum spanning tree-based local search. The main parameters of

the method are (*),+.-0/21 3 , the number of outer iterations to be performed, and 4 ,

the candidate list size, which is a parameter of the construction phase controlling

the diversity of the solutions built in that phase. The algorithm iterates (5)0+ 67/21 3
times, executing first the construction phase, and afterwards two different local

search methods; these procedures are described in the following subsections. At

the end of all iterations, the best solution found is returned.

2.1 Construction Phase
Our construction phase can be seen as a customized version of the Takahashi-

Matsuyama algorithm [6]. The algorithm (shown in Figure 1) takes as inputs the

graph � , the matrix of costs � and the GRASP parameter 4 (the candidate list size).

The current solution 8:9<;>= is initialized with node ' . Iteratively the construction

phase adds new terminal nodes to the current solution. On each iteration, the algo-

c
3�465�48795�:<;<;)=

2

rithm chooses randomly a terminal node / not yet included in the current solution

8 9<;2= and computes the 4 shortest paths from / to 8 9<;2= using the Yen algorithm [8].

These paths are stored in a restricted candidate list
���

. A path � is randomly se-

lected from
���

and added to 8 9<;2= . This process is repeated until all the terminal

nodes have been added; then 8:9<;2= , which is a feasible solution, is returned.

Procedure GRASP RSPG;
Input: ���
	������� , � , � , ����������� � ;

1 !#"�$ %'&)(��*,+ ;
2 for "-�/.001'101 ��2���������'� do
3 354�6 78*,9;:0<>=@?BA�C>DE?BF :0< G-H>I0=�J�	��K��L� ;
4 MN *PO)?BJ�F <>JQA RS:)T>JQ=�	U3 4'6 7 � ;
5 %'&)(� ('&)V5*PW-XZY0[;	U3 4'6 7 � ;
6 \]Q� (�� MN Q3^4'6'7@_`*,a^:)DQI0b OcJ�I0A�DBH .�	��d��L MN E3^4'6 7�� ;
7 if 	U]Q� (�fe�%�&)(� ('&)VU� then goto line g ;
8 \]Q� (�� MN Q3^4'6'7@_`*,a^:)DQI0b OcJ�I0A�DBH hi	��d��L MN E3^4'6 7�� ;
9 if 	U]Q� (�fe�%�&)(� ('&)VU� then goto line g ;
10 if 	j%�&c('� (�&cV-e�!#"�$ %�&c('�B� then
11 3�k l m0n�oS*P3^4'6 7 ; N k l m0n�of* MN ;!#"�$ %�&)(��*p%'&)(� ('&)V ;
12 end if;
13 end for;
14 return

N kjl'm�n�o , 3�k l m0nBo ;
end GRASP RSPG;

Procedure Construction Phase;
Input: ���
	U����q� , � , � ;

1 r`�tsvu a unique identifier $^w
is assigned;

2 3 4�6 7 *,x�yiz ; {|*,} ;
3 while 	j{2~fuf�L���} do
4 M��*P�fA�����I ��x0$ w)� �Ss�	Uu�~S{L�Bz ;
5 �8��* the � shortest paths from M� to 3 4'6 7 ;
6 ��*�OiJQb JQDQ? �ZI0<>T>:0��	j� � � ;
7 3 4'6'7 *P3 4'6'75� x'��z ; {�*�{ � x M�Ez ;
8 end while;
9 return 354�6 7 ;
end Construction Phase;

Fig. 1. GRASP and Construction methods.

2.2 Local Search Phase
Usually the feasible solution built by the construction phase algorithm is not locally

optimal. The GRASP metaheuristic applies a local search phase in order to improve

this solution. We now introduce two different local search strategies that will be

used by our algorithm.

Definition 2.1 (Neighborhood Structure) Let ���� � be the subset of Steiner nodes

associated with a feasible solution of the � ��� � ��� ��� �
	 � � � � . The neighbors of a

solution characterized by its set �� are defined by all the sets of Steiner nodes which

can be obtained by adding a new Steiner node to �� , or by eliminating one of the

Steiner nodes from �� .

2.3 Local Search Strategy by concentrator site insertion
The algorithm �v�d�-�f� �q�8�S�`�` ¡ (shown in Figure 2) takes the current solution 8 97;2=
and its set of Steiner nodes �� , and tries to improve 8:97;2= by inserting a new Steiner

node into �� . Line 1 initializes the best solution with 8 9<;2= . Lines 2-10 search for

a better neighbor solution adding a new Steiner node ¢�£ � � �� into �� . Line 3

computes the sub-graph ¤ induced by the set ��' �/¥¦��§¥ �;¢�� . This graph includes

all possible topologies that have as set of Steiner nodes a subset of ��¨¥ �;¢ � . Line

4 computes a minimum spanning tree 8 for this graph using an algorithm by Mi-

noux [5]. Line 5 connects the nodes of to 8 by means of edges of minimum cost.

The resulting graph is feasible for the RSPG. Iteratively, line 6 removes the pendant

nodes. In lines 7-9, we update (if necessary) the best solution. Once all possible

ways to insert a new Steiner node have been considered, �v�d�-�f� �q�8�S�`�^ ¡ returns

the best solution found, its cost, and its set of Steiner nodes.

c
3�465�48795�:<;<;)=

3

Procedure Local Search 1;
Input: ���
	������� , � , 3 4'6'7 , MN ;
1]Q� (�;*,W-XZY0[;	j354�6 7B� ; �N * MN ; 3 ��� 4 w *P354�6 7 ;
2 for all (Ks�	 N ~ MN � do
3 � * sub-graph induced by 	@x�yiz � MN � x0(�z�� ;
4 3�* MST computed by � F <>:0Ci� �fb �0:0A�F ?�H>� 	�� Q��� ;
5 Compute r`�Ssvu :��* the edge of minimum cost from � to 3 ;3�*�3 � x0��z ;
6 Iteratively remove all Steiner nodes from 3 with

degree 1;
7 if 	�W-X;Y0[Z	U38�Ze]Q� (��� then
8]Q� (�;*PW-XZY0[Z	U38� ; �N *�MN � x0(�z ; 3 ��� 4 w *�3 ;
9 end if;
10 end for;
11 return]Q� (� , �N , 3 ��� 4 w ;
end Local Search 1;

Procedure Local Search 2;
Input: ���|	�����q� , � , 3 4'6 7 , MN ;
1]��'(�Z*PW-XZY0[;	U3 4'6 7 � ; �N *�MN ; 3 ��� 4 w *P3 4'6'7 ;
2 for all (Ks MN do
3 � * sub-graph induced by 	@x0y>z � 	cMN ~Lx0(�z)��� ;
4 �� * connected comp. of � such that y s��� ;
5 3 *,�#O��t	 �� E��� ;
6 Compute r`�tsvu :��* the edge of minimum cost from � to 3 ;3�*p3 � x��0z ;
7 Iteratively remove all Steiner nodes from 3 with

degree 1;
8 if 	UW-XZY0[;	U38�Se2]��'(�B� then
9]��'(�Z*PW-XZY0[;	U38� ; �N * 	 MN ~Lx0(�z�� ; 3 ��� 4 w *P3 ;
10 end if;
11 end for;
12 return]�� ('� , �N , 3 ��� 4 w ;
end Local Search 2;

Fig. 2. Local Search by insertion and by elimination moves.

2.4 Local Search Strategy by concentrator site elimination
The algorithm �v�d�-�f� �q�8�S�`�` 	

(shown in Figure 2) takes the current solution 8 97;2=
and its set of Steiner nodes �� , and tries to find a better solution by eliminating

Steiner nodes belonging to �� . As in �v�d�-�f� �q�8�S�`�` ¡ , the best solution is initialized

with 8 97;2= . Lines 2-11 search for the best neighbor solution eliminating a Steiner

node ¢p£ �� . Line 3 computes the subgraph ¤ induced by the set ��' �
¥ � �� � �;¢�� � .
Since this graph can be unconnected, line 4 computes the connected component
¤ � ¤ containing ' . Clearly, the Steiner nodes non-belonging to

¤ cannot be

considered since they can induce a non-feasible solution. Line 5 computes a min-

imum spanning tree ��

¤ . Line 6 connects the nodes of to 8 by means of

edges of minimum cost. The resulting topology is feasible for the RSPG. Itera-

tively, line 7 removes the pendant nodes. In lines 8-10, we update (if necessary) the

best solution. Once all possible ways to eliminate Steiner nodes have been consid-

ered, �v�d�-�f� �q�8�S�^�` 	
returns the best solution found, its cost, and its set of Steiner

nodes.

3 Performance Tests and Discussion

We present experimental results obtained with an ANSI C implementation of the

previous algorithm, running on a Pentium IV, 1.7 GHz computer, with 1 Gigabyte

of RAM, under Windows XP. The GRASP parameter settings were chosen from

reference literature: candidate list size 4 � ¡�� and maximum number of iterations

(5),+.- / 1 3 � ¡���� .

We used a large test set, by modifying Steiner Problem instances from the

classes C, MC, X, PUC, I080, I160, I320, I640, P6E, P6Z, WRP3 and WRP4 in

the SteinLib library [3]. For each problem, we selected the highest degree terminal

node as the ' node. Also, all the edges between terminal sites were deleted (as they

are not allowed in our problem). We run a feasibility check, if unfeasible, the prob-

lem instance was discarded. By this process, we obtained 182 problem instances,

whose optima was bounded below by the optima of the original SPG instances.

Table 1 shows a summary of computational results. The entries from left to

right are the name of the Steinlib classes, the number of instances (NI), the num-

ber of nodes and edges of the instances, the number of instances where the lower

bound was obtained reaching therefore the optimum (NOPT), the average improve-

ment of the local search phase over the construction phase results (Avg. LSI), the
c
3�465�48795�:<;<;)=

4

average running time per iteration (Avg. secs/itr), and the average of the gap of

the GRASP solution respect to the lower bound (Avg. LB GAP). The average im-

provement is computed as Avg. LSI ��� � ������� ���	���@� ��
��� , where for problem � ,

�������@� � � ����������� ��������� � ������� ������! "!#$# "&%(' # "*)#$# " + , � � � and , � � being the costs of the

solutions delivered in iteration 6 by the Construction Phase and the Local Search

Phase respectively. The average gap is Avg. LB GAP �-� � ������� �/. 02143 �@� ��
��� ,
where for problem � , �/. 02143 �@� � � ¡���� �65 � 9 � # ; 9 � 7 ;98�:�; %(' ;�< ��� 5 ;98�:�;' ;9< ��� 5 ;�8=:; , and,?>@$1 3 A�>CBEDGF is the optimum value corresponding to the original SPG instance.

Avg. Avg. Avg.
Testset NI Nodes Edges NOPT LSI secs/itr LB GAP

C 6 500 625-2500 - 18.17% 13.83 0.43%
MC 2 97-120 4656-7140 1 22.43% 3.18 8.16%
X 2 52-58 1326-1653 - 15.13% 1.43 52.33%
PUC 4 64-128 192-750 2 19.65% 2.47 0.14%
I080 67 80 120-3160 15 15.52% 2.17 9.83%
I160 22 160 240-2544 7 21.31% 3.02 3.57%
I320 13 320 480-10208 3 22.48% 10.05 2.82%
I640 10 640 960-4135 2 21.33% 35.74 3.73%
P6E 10 100-200 180-370 2 22.12% 1.98 17.08%
P6Z 5 100-200 180-370 1 20.36% 1.54 27.33%
WRP3 23 84-886 149-1800 7 22.21% 25.08 0.00029%
WRP4 18 110-844 188-1691 4 25.14% 31.56 0.00108%

Table I. Computational results.

We observe that for all problem classes, the local search phase improves signif-

icantly (always over 15% average improvement) the solutions built by the greedy

construction phase.

The overall results show that GRASP finds in most cases good quality solutions.

In 44 instances (out of 182) we reached the lower bound and therefore optimality.

As in general only lower bounds and not true optima are known, it is natural that a

gap persists in many cases, as shown in the table, with wide variations depending

on the problem class. Even then, this gap is usually quite small (less than 5% gap

average in 7 over 12 problem classes), showing the interest of the proposed method.

c
3�465�48795�:<;<;)=

5

